1.

Consider a cycle tyre bering filled with air by a pump. Let V be the volume of the tyre (fixed) and at each stroke of the pump DeltaV(=V) of air is transferred to the tube adiabatically. What is the work done when the pressure in the tube is increased from P_(1)" to "P_(2) ?

Answer» <html><body><p></p>Solution :`P(V+Deltaupsilon)^(<a href="https://interviewquestions.tuteehub.com/tag/gamma-470142" style="font-weight:bold;" target="_blank" title="Click to know more about GAMMA">GAMMA</a>)=(P+<a href="https://interviewquestions.tuteehub.com/tag/deltap-2053537" style="font-weight:bold;" target="_blank" title="Click to know more about DELTAP">DELTAP</a>)V^(gamma)`<br/> `P[1+gamma(Deltaupsilon)/V]=P[1+(Deltap)/P]` <br/> `gamma(Deltaupsilon)/V=(Deltap)/P,(dupsilon)/(<a href="https://interviewquestions.tuteehub.com/tag/dp-959208" style="font-weight:bold;" target="_blank" title="Click to know more about DP">DP</a>)=V/(gammaP)` <br/> W.D =`int_(P_(1))^(P_(2))Pdupsilon= int_(P_(1))^(P_(2))PV/(gammaP)dp=((P_(2)-P_(1)))/gammaV`</body></html>


Discussion

No Comment Found