Saved Bookmarks
| 1. |
Consider a hyperbola H : `x^(2)-y^(2)` =k and a parabola `P:y=x^(2)` then identify the correct statements(S)A. If point of intrsections of P and H are concyclic then `k lt 2`B. If P and H touch each other then `k = 1//4`C. If `k=-1//3` and `m_(1)`, are the slopes of common tangents to P and H then `(3m_(1).^(2)+8)(3m_(2).^(2)+8)=112`D. If P,H do not touch but intersect at exactly two points then `k lt 0` |
|
Answer» Correct Answer - A::B::C::D `y-y^(2)=k` for concyclic `D ge 0` ge for common tangent `y=mx pm sqrt(km^(2)-k)` and `y = mx-(1)/(4)m^(2)` comparing `(3m_(1).^(2)+8)(3m_(2).^(2)+8)=112` |
|