InterviewSolution
Saved Bookmarks
| 1. |
Consider an ellipse `(x^2)/4+y^2=alpha(alpha`isparameter `>0)`and aparabola `y^2=8x`. If a common tangent to the ellipse and theparabola meets the coordinate axes at `Aa n dB`, respectively, then find the locus of themidpoint of `A Bdot` |
|
Answer» The equation of tangent to `y^(2)=8x "at" (2t^(2),4t)` is `yt-x=2t^(2)=0" "(1)` The equation of tangent to the ellipse `(x^(2))/(4alpha)+(y^(2))/(alpha)=1` or `(2 sqrt(alpha) cos, theta, sqrt(alpha sin theta))` ltbrlt is ` (xcos theta)/(2sqrt(alpha))+(ysin theta)/(alpha))=1" "(2)` Comparing (1)and (2), we get `(sqrt(alpha))/(cos theta)=-t^(2),(sqrtalpha)/(sin theta)=2t" "(3)` Let the midpoint of AB be (h,k).Them, `h=(sqrt(alpha))/(cos theta),k=(sqrt(alpha))/(2 sin theta)` `:. h=-t^(2),k=t or k^(2)=-h` or `y^(2)=-x" "` [From (3)] |
|