1.

Consider f(x)=int_(-1)^(x)(e^((x-t)/(x-2-t))dt)/(x-2-t)^(2) Q. The greatest integer in range of f(x) is

Answer»

0
1
2
3

Solution :Put `(1)/(x-2-t)=u`
`IMPLIES(1)/((x-2-t)^(2))dt=du`
`f(x)=int_((1)/(x-1))^(-(1)/(2))e.e^(2u)du`
`f(x)=(e)/(2).(e^(-1)-e^((2)/(x-1)))`
`f(x)=(1)/(2)-(e)/(2).e^((2)/(x-1))`
(1) `f(x)LT(1)/(2)` for all `xepsilonR`
`implies` Greatest integer in the Range `=0`
(2) `f^(')(x)=(e)/((x-1)^(2))e^((2)/(x-1))`
`f^(')(-1)=(1)/(4)(x+1)`
`impliesy` INTERCEPT`=(1)/(4)`


Discussion

No Comment Found

Related InterviewSolutions