InterviewSolution
Saved Bookmarks
| 1. |
Consider f(x)=sin^(-1)((x+3)/(2x+5)),g(x)=sin^(-1)((ax^(2)+b)/(x^(2)+5)). If Lim_(xto oo)(f(x)-g(x))=0 and Lim_(xto oo) (f(x)+g(x))=(pi)/(4), then find the value of (a+b^(2)). |
|
Answer» Solution :`underset(xtooo)Limsin^(-1)((x+3)/(2x+5))-SIN^(-1)((ax^(2)+b)/(x^(2)+5))=0"as"xtooosin^(-1)((x+3)/(2x+5))=(PI)/(6)` `:.""underset(xtooo)Limsin^(-1)((ax^(2)+b)/(x^(2)+5))=(pi)/(6)"":.""a=(1)/(2)` Now, `underset(xtooo)Limsin^(-1)((x+3)/(2x+5))+sin^(-1)((ax^(2)+b)/(x^(2)+5))=(pi)/(4)rArr"sin"^(-1)(3)/(4)rArr+"sin"^(-1)((b)/(5))=(pi)/(4)` `sin^(-1)((b)/(5))=tan^(-1)1-"tan"^(-1)(3)/(4)rArr""sin^(-1)((b)/(5))=sin^(-1)((1)/(SQRT(50)))` `:.""b=(1)/(sqrt(2))"":.""b^(2)=(1)/(2)` `:.""a+b^(2)=1`. |
|