

InterviewSolution
Saved Bookmarks
1. |
Consider `int(x^(3)+3x^(2)+2x+1)/(sqrt(x^(2)+x+1))dx` `=(ax^(2)+bx+c)sqrt(x^(2)+x+1)+lambda int(dx)/(sqrt(x^(2)+x+1))` Now, match the following lists and then choose the correct code. Codes: `{:(,a,b,c,d),((1),q,p,s,r),((2),s,p,q,r),((3),r,q,p,s),((4),q,s,p,r):}` |
Answer» Correct Answer - 4 ` int(x^(3)+3x^(2)+2x+1)/(sqrt(x^(2)+x+1))dx` `=(ax^(2)+bx+c)sqrt(x^(2)+x+1)+lambda int(dx)/(sqrt(x^(2)+x+1))` Differentiating both side, we get `(x^(3)+3x^(2)+2x+1)/(sqrt(x^(2)+x+1))=((ax^(2)+bx+c)(2x+1))/(2sqrt(x^(2)+x+1))+(2ax+b)sqrt(x^(2)+x+1)+lambda(1)/(sqrt(x^(2)+x+1))` `=(6ax^(3)+(5a+4b)x^(2)+(4a+3b+2c)x+(c+2b+2lambda))/(2sqrt(x^(2)+x+1))` Now, compare coefficients on both sides and solve equations. |
|