InterviewSolution
Saved Bookmarks
| 1. |
Consider point A(6, 30), point B(24, 6) and line AB: 4x+3y = 114. Point P(0, lambda) is a point on y-axis such that 0 lt lambda lt 38 " and point " Q(0, lambda) is a point on y-axis such that lambda gt 38. For all positions of pont P, angle APB is maximum when point P is |
|
Answer» (0, 12) `"Slope of "AP" is "m_(1)= (30-LAMBDA)/(6)` `"Slope of "BP" is "m_(2)= (6-lambda)/(24)` `"tan"THETA = ((30-lambda)/(6)-(6-lambda)/(24))/(1+((30-lambda)/(6))((6-lambda)/(24)))` `=(720-24lambda-36+6lambda)/(144+180-36lambda+lambda^(2))` `=(18(38-lambda))/(324-36lambda+lambda^(2)) = ((38-lambda)18)/((lambda-18)^(2))` `"Clearly, for "0 lt lambda lt 38.` Maximum value of `"tan" theta to oo " for which " theta = (pi)/(2),` `"Now, " (d)/(dlambda)("tan" theta) = (18(18-lambda)(lambda-58))/((lambda-18)^(4))` `"Clearly, "lambda = 58` is point of maximum as derivative changes sign from `'+' " to " '-'`. So, point `Q-=(0,58) " when " angleAQB`is maximum. |
|