1.

Consider the equaiton of line `abarz + abarz+ abarz + b=0`, where b is a real parameter and a is fixed non-zero complex number. The locus of mid-point of the line intercepted between real and imaginary axis is given byA. `az- bar(az) =0`B. `az + bar(az) =0`C. `az-bar(az) + b =0`D. `az - bar(az) + 2b = 0`

Answer» Correct Answer - B
Given equation of line is `abarz + abarz + b =0AA b in R`.
Let the PQ be the segement intercept between axes.
For intercept on real axis `Z_(R)`.
`z = barz`
`rArr Z_(R)(a+ bara) + b =0`
` rArr Z_(R) = (-b)/(a + bara)`
For intercept on imaginary `Z_(1)`
`z + barz = 0`
`rArr Z_(1)(bara - a) + b=0`
`rArr Z_(1) = (b)/(a+bara)`
For mid-point,
`z= (Z_(R) + Z_(I))/(2)`
`rArr z = (-b)/(2)[(1)/(bara+a)+(1)/(bara +a)]`
`z= (barab)/((a + bara)(a-bara))`
`rArr z = (barab)/(a^(2) -(a)^(2))`
`(z[a^(2)-(a)^(2)])/(bara) = barz((bara)^(2) - (a)^(2))/(a)`
`rArr az + bar(az) =0`


Discussion

No Comment Found

Related InterviewSolutions