InterviewSolution
Saved Bookmarks
| 1. |
If the imaginery part of `(z-3)/(e^(itheta))+(e^(itheta))/(z-3)` is zero, then `z` can lie onA. a circle with unit radiusB. a circle with radius `3` unitsC. a straight line through the point `(3,0)`D. a parabola with the vertex `(3,0)` |
|
Answer» Correct Answer - A::C `(a,c)` Let `z-3=re^(iphi)` `:. (z-3)/(e^(itheta))+(e^(itheta))/(z-3)=re^(i(phi-theta))+(1)/(r )e^(i(theta-phi))` Imaginargy part of the above `=r sin (phi-theta)-(1)/(r )sin(phi-theta)` Given that `r sin(phi-theta)-(1)/(r )sin(phi-theta)=0` `impliesr-(1)/(r )=0` or `sin(phi-theta)=0` `impliesr-(1)/(r )=0impliesr=1` `implies|z-3|=1` `impliesz` lies on a circle with unit radius. `sin(phi-theta)=0impliesphi=theta` `:.z-3=re^(itheta)` `z-3=rcostheta`, `y=r sin theta` `impliesx-3=rcostheta`, `y=rsin theta` `(x-3)/(costheta)=(y)/(sintheta)=r` This represents a straight line through `(3,0)`. |
|