1.

Consider the equaitonof line abarz + abarz+ abarz + b=0, whereb is arealparameterand a isfixed non-zero complex number. Theinterceptof lineon real axis is given by

Answer»

`(-2b)/(a+bara)`
`(-b)/(2(a+ bara))`
`(-b)/(a+bara)`
`(b)/(a+bara)`

Solution :Givenequationof line is `abarz + abarz + b =0AA b in R`.
Let thePQbe thesegement intercept between AXES.
Forintercept on real axis `Z_(R)`.
`z =BARZ`
`rArr Z_(R)(a+ bara) + b =0`
` rArr Z_(R) = (-b)/(a + bara)`
For interceptonimaginary `Z_(1)`
`z +barz = 0`
`rArr Z_(1)(bara - a) + b=0`
`rArr Z_(1)= (b)/(a+bara)`
For mid-point,
`z= (Z_(R) + Z_(I))/(2)`
`rArr z =(-b)/(2)[(1)/(bara+a)+(1)/(bara +a)]`
`z= (BARAB)/((a + bara)(a-bara))`
`rArr z = (barab)/(a^(2) -(a)^(2))`
`(z[a^(2)-(a)^(2)])/(bara) = barz((bara)^(2) - (a)^(2))/(a)`
`rArr az + BAR(az) =0`


Discussion

No Comment Found

Related InterviewSolutions