InterviewSolution
Saved Bookmarks
| 1. |
Consider the equation `az + bar(bz) + c =0`, where a,b,c `in`Z If `|a| = |b| ne 0 and az + b barc+ c=0` representsA. an ellipseB. a circleC. a pointD. a straight line |
|
Answer» Correct Answer - D `az + b barz + c=0" "(1)` or `barabarz+ baraz+barc = 0" "(2)` Eliminating `barz` form (1) and (2) we, get `z = (cbara - b barc)/(|b|^(2)-|a|^(2))` If `|a|ne|b|`, then z represents one point on the Argand Plane. If `|a| = |b| and barac ne b barc`, then no such z exists. Adding (1) and (2), `(bara + b)barz +(a+ barb) z + (c + barc) = 0` This is of the form `Abarz + Abarz + B = 0` Where `B = c + barc ` is real. Hence, locus of is a straight line. |
|