InterviewSolution
Saved Bookmarks
| 1. |
Consider the equation of a pair of straight lines as `lambdax^(2)-10xy+12y^(2)+5x-16y-3=0`. The point of intersection of lines is `(alpha, beta)`. Then the value of `alpha beta` isA. 35B. 45C. 20D. 15 |
|
Answer» Correct Answer - 1 `2x^(2)=10xy+12y^(2)+5x-16y-3=0` Consider the homogeneous part `2x^(2)-10xy+12y^(2)=(x-2y)(2x-6)` `2x^(2)-10xy+12y^(2)+5x-16y-3` `-=(2x-6y+A)(x-2y+B)` Comparing coefficients , we get `A=-1,B=3` Hence , the lines are `2x-6y-1=0and x-2y+3=0` Solving , we get the intersection points as `(-10,-7//2)`. Therefore , Product `=35` |
|