1.

Consider the expansion of `(1 + x)^(2n+1)` If the coefficients of `x^(r) and x^(r+1)` are equal in the expansion, then r is equal toA. nB. `(2n-1)/(2)`C. `(2n+1)/(2)`D. n + 1

Answer» Correct Answer - A
`(1+x)^(2n+1)=.^((2n+1))C_(0)x^(0)+.^((2n+1))C_(1)x^(1)+...+.^((2n+1))C_(2n+1)(x)^(2n+1)`
Coefficient of `x^(r)=.^((2n+1))Cr`
Coefficient of `x^(r+1)=.^((2n+1))Cr + 1`
`.^((2n+1))C_(r)=.^((2n+1))Cr+1`
`rArr ((2n+1)!)/(r!(2n+1-r)!)=((2n+1)!)/((r+1)!(2n-r)!)`
`rArr ((2n-r)!)/((2n+1-r)(2n-r)!)=(r!)/((r+1)r!)`
`rArr (r + 1) = 2n + 1 - r`
`rArr r = n`


Discussion

No Comment Found