InterviewSolution
Saved Bookmarks
| 1. |
Consider the following nuclear fission reaction `._(88)Ra^(226) to ._(86)Rn^(222)+._(2)He^(4)+Q`In the fission reaction. Kinetic energy of `alpha`-particle is 4.44 MeV. Find the energy emitted as `gamma`-radiation in keV in this reaction. `m(._(88)Ra^(226))=226.005` amu `m(._(86)Rn^(222))=222.000` amu |
|
Answer» (a) Alpha particle decay of `""_(88)^(226)Ra` emits a helium nucles. As a result, its mass number reduces to (226-4) 222 and its atomic number reduces to (88-2)86. This is shown in the following nuclear reaction. `""_(88)^(226)Rato""_(86)^(222)Ra+""_(2)^(4)He` Q-value of emitted `alpha`-particle = (Sum of initial mass - Sum of final mass) `c^(2)` Where, c= speed of light It is given that: `m(""_(88)^(226)Ra)=226.02540u` `m(""_(86)^(222)Rn)=222.01750u` `m(""_(2)^(4)He)=4.002603u` Q-value = [226.02540-(222.01750+4.002603)] u `c^(2)` = 0.005297 u `c^(2)` But 1 u = 931.5 `MeV//C^(2)` `thereforeQ=0.005297xx931.5~~4.94 MeV` Kinetic energy of the `alpha`-particle `=(("Mass number after decay")/("Mass number before decay"))xxQ` `=(222)/(226)xx4.94=4.85MeV` (b) Alpha particle decay of `(""_(86)^(220)Rn)` is shown by the following nuclear reaction. `""_(86)^(220)Rnto""_(84)^(216)"Po"+""_(2)^(4)He` It is given that: Mass of `(""_(86)^(220)Rn)` = 220.01137 u Mass of `(""_(84)^(216)Po)` = 216.00189 u `therefore`Q-value= [220.01137-(216.00189+4.00260)]`xx` 931.5 `~~641` MeV Kinetic energy of the `alpha`-particle `=((220-4)/(220))xx6.41` =6.29 MeV |
|