InterviewSolution
Saved Bookmarks
| 1. |
cos-(i)cos x + cosy-2cos2 |
|
Answer» By trigonometric sum identity, cos(A+B) = cos(A)*cos(B) - sin(A)*sin(B) andcos(A-B) = cos(A)*cos(B) + sin(A)*sin(B) ii) Adding both above, cos(A+B) + cos(A-B) = 2cos(A)*cos(B) iii) Now, let A = (x + y)/2 and B = (x - y)/2 ==> A + B = (x + y + x - y)/2 = 2x/2 = x and A - B = (x + y - x + y)/2 = 2y/2 = y iv) Thus replacing these in (ii) above, cos(x) + cos(y) = 2cos[(x + y)/2]*cos[(x - y)/2] [Proved] |
|