1.

`cos(sin^(-1).(3)/(5)+sin^(-1).(5)/(13))` का मान है -

Answer» माना `sin^(-1).(3)/(5)=A` और `sin^(-1).(5)/(13)=B,` जहाँ `A,B in [-(pi)/(2),(pi)/(2)]`
तब `sinA=(3)/(5)` और `sinB=(5)/(13).`
चूँकि `A, B in [-(pi)/(2),(pi)/(2)]` इसलिए `cosA, cosB gt 0`
`therefore" "cosA=sqrt(1-sin^(2)A)`
`=sqrt(1-(9)/(25))=(4)/(5)`
`cosB=sqrt(1-sin^(2)B)`
`=sqrt(1-(25)/(169))=(12)/(13).`
अब, `cos(sin^(-1).(3)/(5)+sin^(-1).(5)/(13))=cos(A+B)`
`=cosAcos B-sinAsinB`
`=((4)/(5)xx(12)/(13))-((3)/(5)xx(5)/(13))`
`=(48)/(65)-(15)/(65)`
`=(33)/(65)`.


Discussion

No Comment Found