1.

\(cot^{-1}9+cosec^{-1}\frac{\sqrt{41}}{4}\)= ?A. \(\frac{\pi}{6}\)B. \(\frac{\pi}{4}\)C. \(\frac{\pi}{3}\)D. \(\frac{3\pi}{4}\)

Answer»

Correct Answer is (B) \(\frac{\pi}{4}\) 

Now \(cot^{-1}9+cosec^{-1}\frac{\sqrt{41}}{4}\) can be written in terms of tan inverse as \(cot^{-1}9+cosec^{-1}\frac{\sqrt{41}}{4}\)\(cot^{-1}\frac{1}{9}+cosec^{-1}\frac{4}{5}\) 

Since we know that tan-1 x + tan-1 y = \(tan^{-1}(\frac{x+y}{1-xy})\) 

⇒ \(cos^{-1}\frac{1}{9}+cosec^{-1}\frac{4}{5}\) = tan-1\((\frac{\frac{1}{9}+\frac{4}{5}}{1-(\frac{1}{9}\times\frac{4}{5})})\) 

= tan-1\((\frac{41}{41})\) 

= tan-1 (1) = \(\frac{\pi}{4}\)



Discussion

No Comment Found