1.

D and E are points on the sides CA and CB respectively of a triangle ABC right angled at C. Prove that AE2 + BD2 = AB2 + DE2 .

Answer»

Data: In ∆ABC, ∠C = 90°, D and E are points on the sides CA and CB respectively 

To Prove: AE2 + BD2 = AB2 + DE2 

In ⊥∆ACE, ∠C = 90° 

∴ AE2 = AC2 + CE2 ………. (i) 

In ⊥∆DEB, ∠C = 90° 

∴ BD2 = DC2 + CB2 ………… (ii) 

From adding equations (i) + (ii) 

AE2 + BD2 = AC2 + CE2 + DC2 + CB2 

= AC2 + CB2 + DC2 + CE2 

∴ AE2 + BD2 = AB2 + DE2 (Theorem 8).



Discussion

No Comment Found

Related InterviewSolutions