1.

`d/(dx)[atan^(-1)x+blog((x-1)/(x+1))]=1/(x^4-1)=>a-2b=`A. 1B. `-1`C. 0D. 2

Answer» Correct Answer - B
Given `(d)/(dx)[ a tan^(-1)x+b log((x-1)/(x+1))]=(1)/(x^(4)+1)`
On intergrating both sides, we get
`a tan^(-1)x+b log((x-1)/(x+1))=(1)/(2)int[(1)/(x^(2)-1)-(1)/(x^(2)+1)]dx`
`rArr" " a tan^(-1)x+b log((x-1)/(x+1))=(1)/(4)log((x-1)/(x+1))-(1)/(2)tan^(-1)x`
`rArr" "A=-(1)/(2), b=(1)/(4)`
`therefore" "a-2b=-(1)/(2)-2((1)/(4))=-1`


Discussion

No Comment Found