1.

DABC be a tetrahedron such that AD is perpendicular to the base ABC and angleABC=30^(@). The volume of tetrahedron is 18. If value of AB+BC+AD is minimum, then the length of AC is

Answer»

`6sqrt(2-sqrt(3))`
`3(sqrt(6)-sqrt(2))`
`6sqrt(2+sqrt(3))`
`3(sqrt(6)+sqrt(2))`

Solution :Volume `=1/3AD(1/2AB.BCsin30^(@))`
`rArr 18-1/12(AD.AB.BC)`
`rArr AD.AB.BC=216`
Now, `AB+BC + ADge3 (AD.AB.BC)^(1//3)`

`rArr AB+BC+AD ge18`
Minimum VALUE occurs when AB=BC=AD=6
Hence, `AC = sqrt(AB^(2)+BC^(2)-2AB.BC. cos30^(@))`
`=6sqrt(2-sqrt(3))`


Discussion

No Comment Found

Related InterviewSolutions