1.

Define metric spaces with examples.

Answer»

Definitions

Let X be a set. A metric on X is an assignment of a distance d(xy) ∈ R to every pair of "points" xy in X 
(that is dX × X→ R) satisfying the following:

  1. (Positivity) For all xy ∈ Xd(xy) ≥ 0 and d(xy) = 0 if and only if x = y,

  2. (Symmetry) For all xy ∈ Xd(xy) = d(yx),

  3. (The triangle inequality) For all xyz ∈ Xd(xy) + d(yz) ≥ d(xz).


metric space is a set X together with such a metric.

Examples

The prototype: The set of real numbers R with the metric d(x, y) = |x - y|.This is what is called the usual metric on R.



Discussion

No Comment Found

Related InterviewSolutions