1.

Differentiate each of the following from the first principle . (i) sin sqrt(x) , (ii) cos sqrt(x) (iii) tan sqrt(x)

Answer»

Solution :(i) Let `y = sin sqrt(X)`
Let `deltay` be an increment in y, corresponding to an increment `deltax` in x.
Then, `y +deltay=sinsqrt(x+deltax)`
`rArr deltay=sinsqrt(x+deltax)-sinsqrt(x)`
`rArr (deltay)/(deltax)=(sinsqrt(x+deltax)-sinsqrt(x))/(deltax)`
`rArr(dy)/(dx) = underset(deltaxrarr0)("lim")(deltay)/(deltax)`
`= underset(deltaxrarr0)("lim")({sinsqrt(x+deltax) - sinsqrt(x)})/(deltax)`
`= underset(deltararr0)("lim") (2cos((sqrt(x+deltax) + sqrt(x))/(2)) sin ((sqrt(x+deltax) - sqrt(x))/(2)))/({(x+deltax) - x})`
`["USING" sinX - sinD = 2 cos' ((C+D))/(2) sin ((C-D)/(2))]`
`= underset(deltaxrarr0)("lim") (2cos((sqrt(x+deltax) + sqrt(x))/(2))sin ((sqrt(x+deltax) - sqrt(x))/(2)))/((sqrt(x+deltax) + sqrt(x)) (sqrt(x+deltax) - sqrt(x)))`
`[ :'(x+deltax) -x = (sqrt(x+deltax) + sqrt(x))(sqrt(x+deltax)-sqrt(x))]`
`= underset(deltaxrarr0)("lim")(sin((sqrt(x+deltax) - sqrt(x))/(2)))/(((sqrt(x+deltax)-sqrt(x))/(2))). underset(deltaxrarr0)("lim")cos((sqrt(x+deltax)+sqrt(x))/(2)). underset(deltaxrarr0)("lim") (1)/((sqrt(x+deltax) + sqrt(x)))`
`= underset(thetararr0)("lim")(sintheta)/(theta).underset(deltaxrarr0)("lim")(cos(sqrt(x+deltax) + sqrt(x))/(2)).underset(deltaxrarr0)("lim")(1)/((sqrt(x+deltax)+sqrt(x)))`,
where `((sqrt(x+deltax) - sqrt(x)))/(2) = theta` and `deltax rarr 0 rArr theta rarr 0`
`= 1 xx cos sqrt(x) xx 1/(2sqrt(x))= (cossqrt(x))/(2sqrt(x))`.
HENCE , `d/(dx) (sinsqrt(x)) = (cossqrt(x))/(2sqrt(x))`.
(i) Let `y = cos sqrt(x)`.
Let `deltay` be an increment in y, corresponding to an increment `deltax`in x.
Then, `y+deltay = cossqrt(x + deltax) - cos sqrt(x)`
`rArr(deltay)/(deltax) = ({cossqrt(x+deltax)-cossqrt(x)})/(deltax)`
`rArr (dy)/(dx) = underset(deltaxrarr0)("lim")(deltay)/(deltax)`
`= underset(deltax rarr 0)("lim") ({cossqrt(x+deltax)- cos(x)})/(deltax)`
` = underset(deltaxrarr0)("lim") (-2sin((sqrt(x+deltax) + sqrt(x))/(2)) sin ((sqrt(x+deltax) - sqrt(x))/(2)))/({(x+deltax) - x})`

` = underset(deltaxrarr0)("lim") (-2sin((sqrt(x+deltax) + sqrt(x))/(2)) sin ((sqrt(x+deltax) - sqrt(x))/(2)))/((sqrt(x+deltax)+sqrt(x))(sqrt(x+deltax)-sqrt(x)))`
`=-underset(deltaxrarr0)("lim")sin((sqrt(x+deltax)+sqrt(x))/(2)).underset(deltararr0)("lim") (sin '((sqrt(x+ deltax) - sqrt(x))/(2)))/(((sqrt(x+deltax)-sqrt(x))/(2))) . underset(deltararr0)("lim")(1)/((sqrt(x+deltax)+sqrt(x)))`
where `((sqrt(x+deltax)-sqrt(x)))/(2) = theta`
`= - sin((2sqrt(x))/(2)) xx 1 xx 1/(2sqrt(x) ) = (-sinsqrt(x))/(2sqrt(x))`
Hence , d/(dx) (cossqrt(x)) = (-sinsqrt(x))/(2sqrt(x))`.
(iii) Let `y = TAN sqrt(x)`.
Let `deltay` be an increment in y, corresponding to an increment `deltax` in x.
Then, `y + deltay = tan sqrt(x+deltax)`
`rArr deltay = tan sqrt(x+deltax) - tan sqrt(x)`
`rArr (deltay)/(deltax) = (tan(sqrt(x+deltax)- tan sqrt(x)))/(deltax)`
`rArr (dy)/(dx) = underset(deltax rarr 0)("lim") (deltay)/(deltax)`
`= underset(deltax rarr 0)("lim") ((tan sqrt(x+deltax) - tan sqrt(x)))/(deltax)`
`= underset(deltaxrarr0)("lim")({(sinsqrt(x+deltax))/(cos sqrt(x+deltax))-(sinsqrt(x))/(cossqrt(x))})/(deltax)`
`= underset(deltaxrarr0)("lim") ((sinsqrt(x+deltax) cos sqrt(x) - cos sqrt(x+deltax) sinsqrt(x)))/(deltax.cos sqrt(x+deltax).cossqrt(x))`
` = underset(deltaxrarr0)("lim") {(sin(sqrt(x+deltax) - sqrt(x)))/(|(x+deltax)-x|) . (1)/(cossqrt(x+deltax).cossqrt(x))}`
`[ :' deltax = (x+deltax )- x]`
`= underset(deltaxrarr0)("lim") {(sin(sqrt(x+deltax)-sqrt(x)))/((sqrt(x+deltax) - sqrt(x))(sqrt(x+deltax) + sqrt(x))).(1)/(cos sqrt(x+deltax).cossqrt(x))}`
`=underset(deltararr0)("lim")(sin(sqrt(x+deltax) - sqrt(x)))/((sqrt(x+deltax) - sqrt(x))).underset(deltaxrarr0)("lim") (1)/((sqrt(x+deltax)+sqrt(x))).underset(deltaxrarr0)("lim") (1)/(cossqrt(x+deltax).cossqrt(x))`
`= (underset(thetararr0)("lim") (sintheta)/(theta)).1/(2sqrt(x)).(1)/(cos^(2)sqrt(x))=1xx 1/(2sqrt(x))xx(1)/(cos^(2)sqrt(x))`
`= (sec^(2)sqrt(x))/(2sqrt(x))`.
Hence, `d/(dx) (tansqrt(x)) = (sec^(2)sqrt(x))/(2sqrt(x))`,


Discussion

No Comment Found