1.

Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum.

Answer»

Let the two numbers be a and b. 

Given : 

a + b = 15 

Assume, 

S = a2b3 

S = a2(15 - a)3 

\(\frac{dS}{da}\)= 2a(15 - a)3 - 3a2(15 - a)2

Condition maxima and minima is,

\(\frac{dS}{da}\) = 0

⇒ 2a(15 - a)3 - 3a2(15 - a)2 = 0 

⇒ a(15 - a)2 {2(15 – a) – 3a} = 0 

⇒ a(15 - a)2 {30 – 5a} = 0 

⇒ a = 0, 15, 6

\(\frac{d^2S}{da^2}\) = 2(15 - a)3 - 6a(15 - a)2 - 6a(15 - a)2+ 3a2(15 - a)

⇒ \(\frac{d^2S}{da^2}\) = (15 - a){2(15 - a)2 - 12a(15 - a)+ 3a2}

For S to minimum,

\(\frac{d^2S}{da^2}\) > 0

a = 0 ⇒ \(\frac{d^2S}{da^2}\) = 450 ⇒ minima 

a = 6 ⇒ \(\frac{d^2S}{da^2}\) = - 378 ⇒ maxima 

a = 15 ⇒ \(\frac{d^2S}{da^2}\) = 0 ⇒ point of inflection

Hence, two numbers are 0 and 15



Discussion

No Comment Found