| 1. |
Divide 15 into two parts such that the square of one multiplied with the cube of the other is minimum. |
|
Answer» Let the two numbers be a and b. Given : a + b = 15 Assume, S = a2b3 S = a2(15 - a)3 \(\frac{dS}{da}\)= 2a(15 - a)3 - 3a2(15 - a)2 Condition maxima and minima is, ⇒\(\frac{dS}{da}\) = 0 ⇒ 2a(15 - a)3 - 3a2(15 - a)2 = 0 ⇒ a(15 - a)2 {2(15 – a) – 3a} = 0 ⇒ a(15 - a)2 {30 – 5a} = 0 ⇒ a = 0, 15, 6 \(\frac{d^2S}{da^2}\) = 2(15 - a)3 - 6a(15 - a)2 - 6a(15 - a)2+ 3a2(15 - a) ⇒ \(\frac{d^2S}{da^2}\) = (15 - a){2(15 - a)2 - 12a(15 - a)+ 3a2} For S to minimum, \(\frac{d^2S}{da^2}\) > 0 a = 0 ⇒ \(\frac{d^2S}{da^2}\) = 450 ⇒ minima a = 6 ⇒ \(\frac{d^2S}{da^2}\) = - 378 ⇒ maxima a = 15 ⇒ \(\frac{d^2S}{da^2}\) = 0 ⇒ point of inflection Hence, two numbers are 0 and 15 |
|