Saved Bookmarks
| 1. |
Divide 64 into two parts such that the sum of the cubes of two parts is minimum. |
|
Answer» Let the two positive numbers be a and b. Given : a + b = 64 … (1) Also, a3 + b3 is minima Assume, S = a3 + b3 (from equation 1) S = a3 + (64 – a)3 ⇒ \(\frac{ds}{da}\) = 3a2 + 3(64 – a)2 × ( - 1) ⇒ \(\frac{ds}{da}\) = 0 (condition for maxima and minima) ⇒ 3a2 + 3(64 – a)2 × ( - 1) = 0 ⇒ 3a2 + 3(4096 + a2 – 128a) × (-1) = 0 ⇒ 3a2 – 3 × 4096 - 3a2 + 424a = 0 ⇒ a = 32 \(\frac{d^2s}{da^2}\) = 6a + 6(64 - a) = 384 Since, \(\frac{d^2s}{da^2}\)> 0 ⇒ a = 32 will give minimum value Hence, two numbers will be 32 and 32. |
|