1.

Divide 64 into two parts such that the sum of the cubes of two parts is minimum.

Answer»

Let the two positive numbers be a and b. 

Given : 

a + b = 64 … (1) 

Also, 

a3 + b3 is minima 

Assume, 

S = a3 + b3 (from equation 1) 

S = a3 + (64 – a)3 

\(\frac{ds}{da}\) = 3a2 + 3(64 – a)2 × ( - 1)

\(\frac{ds}{da}\) = 0

(condition for maxima and minima) 

⇒ 3a2 + 3(64 – a)2 × ( - 1) = 0 

⇒ 3a2 + 3(4096 + a2 – 128a) × (-1) = 0 

⇒ 3a2 – 3 × 4096 - 3a2 + 424a = 0 

⇒ a = 32

\(\frac{d^2s}{da^2}\) = 6a + 6(64 - a) = 384

Since, 

\(\frac{d^2s}{da^2}\)> 0 

⇒ a = 32 will give minimum value

Hence, two numbers will be 32 and 32.



Discussion

No Comment Found