| 1. |
Evaluate:\(\displaystyle\sum_{r=1}^{10} (2r-1)^2\) |
|
Answer» \(\displaystyle\sum_{i=1}^{10} (2r-1)^2\) = 12 + 32 + ⋯ + 172 + 192 To find the sum of above 10 terms, we find the sum of n terms in general. ∴ Let Tn be nth term of the series. 12 + 32 + 52 + 72 + ..... to n terms Now, Tn = [1 + (n − 1) × 2]2 = 4n2 − 4n + 1 ∴ 12 + 32 + 52 + ⋯ to n terms = \(\displaystyle\sum_{k=1}^{n} T_k\) = \(\displaystyle\sum_{k=1}^{n} (4k^2-4k'1)\) = \(4\bigg(\displaystyle\sum_{k=1}^{n} k^2\bigg)-4\bigg(\displaystyle\sum_{k=1}^{n} k\bigg)+\) \(\bigg(\displaystyle\sum_{k=1}^{n} 1\bigg)\) = 4 \(\bigg[\frac{n(n + 1)(2n + 1)}{6}\bigg]\) − 4 \(\bigg[\frac{n(n + 1)}{6}\bigg]+n\) = \(\frac{n}{3}\)[2(n + 1)(2n + 1) − 6(n + 1) + 3] = \(\frac{n}{3}\)[4n2 + 6n + 2 − 6n − 6 + 3] = \(\frac{n}{3}\)(4n2 − 1) Now put n = 10 in the above result, we get 12 + 32 + 52 + ⋯ + 172 + 192 = \(\frac{10}{3}\) (4.102 − 1) = \(\frac{10}{3}\)(399) = 1330 |
|