1.

Evaluate:\(\displaystyle\sum_{r=1}^{10} (2r-1)^2\)

Answer»

\(\displaystyle\sum_{i=1}^{10} (2r-1)^2\) = 12 + 32 + ⋯ + 172 + 192

To find the sum of above 10 terms, we find the sum of n terms in general.

∴ Let Tn be nth term of the series.

12 + 32 + 5+ 72 + ..... to n terms

Now, Tn = [1 + (n − 1) × 2]2 = 4n2 − 4n + 1

∴ 12 + 32 + 52 + ⋯ to n terms

\(\displaystyle\sum_{k=1}^{n} T_k\)

\(\displaystyle\sum_{k=1}^{n} (4k^2-4k'1)\)

\(4\bigg(\displaystyle\sum_{k=1}^{n} k^2\bigg)-4\bigg(\displaystyle\sum_{k=1}^{n} k\bigg)+\) \(\bigg(\displaystyle\sum_{k=1}^{n} 1\bigg)\)

= 4 \(\bigg[\frac{n(n + 1)(2n + 1)}{6}\bigg]\) − 4 \(\bigg[\frac{n(n + 1)}{6}\bigg]+n\)

= \(\frac{n}{3}\)[2(n + 1)(2n + 1) − 6(n + 1) + 3]

= \(\frac{n}{3}\)[4n2 + 6n + 2 − 6n − 6 + 3]

= \(\frac{n}{3}\)(4n2 − 1)

Now put n = 10 in the above result, we get

12 + 32 + 52 + ⋯ + 172 + 192 = \(\frac{10}{3}\) (4.102 − 1)

= \(\frac{10}{3}\)(399)

= 1330



Discussion

No Comment Found