

InterviewSolution
Saved Bookmarks
1. |
Evaluate:`int(2x+3)/(sqrt(x^2+4x+1))dx` |
Answer» `int(2x+3)/sqrt(x^(2)+4x+1)dxint((2x+4)-1)/sqrt(x^(2)+4x+1)dx=int(2x+4)/sqrt(x^(2)+4x+1)x-int1/sqrt(x^(2)+4x+1)`dx `=int(dt)/sqrt(t) -int1/((x+2)^(2)-(sqrt(3))^(2))dx`, where `t=(x^(2)+4x+1)` for Ist integral `=2sqrt(t)-ln|(x-2)+sqrt(x^(2)+4x+1)|+C=2sqrt(x^(2)+4x+1)-ln|x+2+sqrt(x^(2)+4x+1)|+C` |
|