

InterviewSolution
Saved Bookmarks
1. |
Evaluate :`int(2x-3)/(x^2+ 3x-18) dx` |
Answer» Let `2x-3=lambdad/(dx)(x^(2)+3x-18)+mu` Then `2x-3=lambdad/(dx)(x^(2)+3x-18)+mu` Comparing the coefficients of like power of x, we get. `2lambda=2`, and `3lambda+mu=-3 rArr lambda=1` and `mu=-6` So, `int(2x-3)/(x^(2)+3x-18)dx = int(2x+3-6)/(x^(2)+3x+9/4-9/4-18dx)= int(2x+3)/(x^(2)+3x-18)dx - 6int1/(x^(2)+3x-18)dx` `=ln|x^(2)+3x-18|-6int1/(x^(2)+3x+9/4-9/4-18)dx = ln|x^(2)+3x-18|-6int1/((x+3/2)^(2)-(9/2)^(2))dx` `ln|x^(2)+3x-18|-6.1/(2(9/2)ln|(x+3/2-9/2)/(x+3/2+9/2)|+C) = ln|x^(2)+3x-18|-2/3ln|(x-3)/(x+6)|+C` |
|