InterviewSolution
Saved Bookmarks
| 1. |
Evaluate \(\int\limits_{0}^{1}\cfrac{1}{\text x^2+1}d\text x\) |
|
Answer» Let I = \(\int\limits_{0}^{1}\cfrac{1}{\text x^2+1}d\text x\) Substituting x=tanθ ⇒ dx=sec2θdθ (By differentiating both sides) Also, when x=0, θ=0 and x=1 θ = \(\cfrac{\pi}4\) Since sec2θ=1 + tan2θ We get I = \(\int\limits_{0}^{\pi/4}d\theta\) = \(\cfrac{\pi}4\) |
|