1.

Evaluate:`int(sec^2x)/(sqrt(tan^2x+4))dx`

Answer» Since derivative of `tanx ` is `sec^(2)x.`
Let `tanx=t` or `sec^(2)x dx=dt`
`:. int(sec^(2)x)/(sqrt(tan^(2)x+4))dx=int(dt)/(sqrt(t^(2)+2^(2)))`
`=log|t+sqrt(t^(2)+4)|+C`
`=log|tanx+sqrt(tan^(2)x+4)|+C`


Discussion

No Comment Found

Related InterviewSolutions