

InterviewSolution
Saved Bookmarks
1. |
Evaluate:`int(sec^2x)/(sqrt(tan^2x+4))dx` |
Answer» Since derivative of `tanx ` is `sec^(2)x.` Let `tanx=t` or `sec^(2)x dx=dt` `:. int(sec^(2)x)/(sqrt(tan^(2)x+4))dx=int(dt)/(sqrt(t^(2)+2^(2)))` `=log|t+sqrt(t^(2)+4)|+C` `=log|tanx+sqrt(tan^(2)x+4)|+C` |
|