InterviewSolution
Saved Bookmarks
| 1. |
Evaluate:`int((x-1)e^x)/((x+1)^3)dx` |
|
Answer» Correct Answer - `(e^(x))/((x+1)^(2))+c` Let `I=int((x-1)e^(x))/((x+1)^(3))dx` `I=int{(x+1-2)/((x+1)^(3))}e^(x) dx=int{(1)/((x+1)^(2))-(2)/((x+1)^(3))}e^(x) dx` `=int e^(x)(1)/((x+1)^(2))dx-2 int e^(x)*(1)/((x+1)^(3))dx` Applying integration by parts, `={(1)/((x+1)^(2))*e^(x)-int e^(x)*(-2)/((x+1)^(3))dx}-2int e^(x)*(1)/((x+1)^(3))dx=(e^(x))/((x+1)^(2))+c` |
|