1.

Evaluate ` int x log x dx`.

Answer» `int underset (II)(x)underset(I)(log)x dx`
`=logx {int x dx}-int {(d)/(dx)(logx)intxdx}dx`
`=(logx)(x^(2))/(2)int(1)/(x)(x^(2))/(2)dx`
`=(x^(2))/(2)log x-(1)/(2)int x dx`
`=(x^(2))/(2)logx-(1)/(2)((x^(2))/(2))+C=(x^(2))/(2)logx-(1)/(4)x^(2)+C`


Discussion

No Comment Found

Related InterviewSolutions