InterviewSolution
Saved Bookmarks
| 1. |
Evaluate the following Integral:\(\int\limits_{\pi/6}^{\pi/3}\)(tan x + cot x)2 dx |
|
Answer» =\(\int\limits_{\pi/6}^{\pi/3}\)tan2x + 2tanx cot x + cot2x dx recall: sec2x - tan2x = 1, cosec2x - cot2x = 1 = \(\int\limits_{\pi/6}^{\pi/3}\)sec2x -1 + 2 + cosec2x - 1 dx = \(\int\limits_{\pi/6}^{\pi/3}\) sec2x + cosec2x dx Integral sec2x is tan x and integral of cosec2x = - cot x = [tan x]\(\cfrac{\frac{\pi}3}{\frac{\pi}6}\) - [cot x]\(\cfrac{\frac{\pi}3}{\frac{\pi}6}\) Tan 30 = cot 60 = \(\cfrac{1}{\sqrt3}\) Tan 60 = cot 30 = √3 = Tan 60 - cot 60 - {Tan 30 - cot 30} = \(\sqrt3-\cfrac{1}{\sqrt3}-(\cfrac{1}{\sqrt3}-\sqrt3)\) = \(\cfrac{4}{\sqrt3}\) |
|