1.

Evaluate the following Integral:\(\int\limits_{\pi/6}^{\pi/3}\)(tan x + cot x)2 dx

Answer»

 =\(\int\limits_{\pi/6}^{\pi/3}\)tan2x + 2tanx cot x + cot2x dx

recall: sec2x - tan2x = 1, cosec2x - cot2x = 1

\(\int\limits_{\pi/6}^{\pi/3}\)sec2x -1 + 2 + cosec2x - 1 dx

\(\int\limits_{\pi/6}^{\pi/3}\) sec2x + cosec2x dx

Integral sec2x is tan x and integral of cosec2x = - cot x

= [tan x]\(\cfrac{\frac{\pi}3}{\frac{\pi}6}\) - [cot x]\(\cfrac{\frac{\pi}3}{\frac{\pi}6}\)

Tan 30 = cot 60 = \(\cfrac{1}{\sqrt3}\)

Tan 60 = cot 30 = √3

= Tan 60 - cot 60 - {Tan 30 - cot 30}

\(\sqrt3-\cfrac{1}{\sqrt3}-(\cfrac{1}{\sqrt3}-\sqrt3)\)

\(\cfrac{4}{\sqrt3}\)



Discussion

No Comment Found