InterviewSolution
Saved Bookmarks
| 1. |
Evaluate the following integral : int(x+sqrt(a^(2)+x^(2)))^(2007)dx |
|
Answer» Solution :Let us substitute `x+SQRT(a^(2)+x^(2))=t` so that `sqrt(a^(2)+x^(2)-x=(a^(2))/(t)` `implies2x=t-(a^(2))/(t)` `impliesdx=(1)/(2)(1+(a^(2))/(t^(2)))DT` under given substitution, the given integral reduces to `int(x+sqrt(a^(2)+x^(2)))^(2007)dx=intt^(2007)*(1)/(2)(1+(a^(2))/(t^(2)))dt` `=(1)/(2)int(t^(2007)+a^(2)t^(2005))dt` `=(1)/(2)[(t^(2008))/(2008)+a^(2)*(t^(2006))/(2006)]+k` `=(1)/(2)(x+sqrt(a^(2)+x^(2)))^(2006)[((x+sqrt(a^(2)+x^(2)))^(2))/(2008)+(a^(2))/(2006)]+k` |
|