InterviewSolution
Saved Bookmarks
| 1. |
Express the following complex numbers in `a+i b`form:`((3-2i)(2+3i))/((1+2i)(2-i))`(ii) `(2-sqrt(-25))/(1-sqrt(-16))` |
|
Answer» Correct Answer - (a) `(63)/(25) -(16)/(25)i` (b) `(12)/(17) + (3)/(17)i` (a) `((3-2i)(2+3i))/((1+2i)(2-i)) = ((6+6)+i(-4+9))/((2+2)+i(4-1))` `- (12+5i)/(4+3i)` ` (12 + 5i)/(4+3i)(4-3i)/(4-3i)` `= ((48 = 15)+i(-36+20))/(16-9i^(2))` `= (63)/(25)-(16)/(25i)` (b) `(2-sqrt(25))/(1-sqrt(-16)) = (2-5i)/(1-4i)` `= (2-5i)/(1-4i)xx(1+4i)/(1+4i)` `= ((2+20)+i(8-5))/(1-16i^(2))` `= (22+ 3i)/(17) = (22)/(17) + (3)/(17) i` (c) `((2i)/( 1+i))^(2) = ((2i(1-i))/((1+i)(1-i))^(n)` ` = ((2(i-i)^(2))/(2))^(n)` `= (i+1)^(n)` ` = (2i)^(n//2)` Hence n = 8 is the least positive integer for which the given complex number is a positive integer. |
|