

InterviewSolution
1. |
Express the following in the form p/q, where p and q are integers and q ≠ 0.(i) \(0.\bar { 6 }\)(ii) \(0.4\bar { 7 }\)(iii) \(0.\bar { 001 }\) |
Answer» (i) \(0.\bar { 6 }\) Let x = \(0.\bar { 6 }\) (Pure recurring decimal) i.e. x = 0.6666 …(1) Multiplying (1) by 10, because ones digit i.e. 6 is repeating, we get 10x = 6.6666 …(2) Subtracting (1) from (2), we get 10x – x = (6.6666…) – (0.6666…) ⇒ 9x = 6 ⇒ x = \(\frac { 6 }{ 9 }\) ⇒ x = \(\frac { 2 }{ 3 }\) (ii) Let x = \(0.4\bar { 7 }\) (Mixed recurring decimal) i.e. x = 0.47777 …(1) Multiplying (1) by 10, to make it pure recurring decimal, we get 10x = 4.7777 …(2) Further multiplying (2) by 10, we get 100x = 47.777 ….(3) Subtracting (2) from (3), we get 100x – 10x = (47.777…) – (4.7777…) ⇒ 90x = 43 ⇒ x = \(\frac { 43 }{ 90 }\) (iii) Let x = \(0.\bar { 001 }\) i.e. x = 0.001001001 …(1) Multiplying (1) by 1000, we get 1000x = 1.001001 …(2) Subtracting (1) from (2), we get 1000x – x = (1.001001…) – (0.001001…) ⇒ 999x = 1 ⇒ x = \(\frac { 1 }{ 999 }\) |
|