InterviewSolution
Saved Bookmarks
| 1. |
f:[0,5]rarrR,y=f(x) such that f''(x)=f''(5-x)AAx in [0,5] f'(0)=1 and f'(5)=7, then the value of int_(1)^(4)f'(x)dx is |
|
Answer» 4 Now `I=int_(1)^(4)xf''(x)dx=int_(1)^(4)(5-x)f''(5-x)dx` `=5int_(1)^(4)f''(x)dx=-I` `therefore""I=(5)/(2)[f'(4)-f'(1)]` `therefore""int_(1)^(4)f'(x)dx=(3)/(2)[f'(4)+f'(1)]` Now, `f''(x)=f''(5-x)` `rArr""f'(x)=-f'(5-x)+C` `rArr""f'(0)+f'(5)=c rArr c=8` `"so"f'(x)+f'(5-x)=8 rArr f'(4)+f'(1)=8` |
|