InterviewSolution
Saved Bookmarks
| 1. |
`f(x)= {{:((|x-4|)/(2(x-4)), if x ne 4),(0,if x = 4):}` at `x = 4` is. |
|
Answer» LHL of f(x) at x=4 is `underset(xto4^(+))limf(x)=underset(hto0)limf(4-h)` `=underset(hto0)lim(|4-h-4|)/(4-h-4)=underset(hto0)lim(|-h|)/(-h)` `=underset(hto0)limh/-h=underset(hto0)lim-1` `=-1` `RHL " of " f(x) " at "x=4" is"` `underset(xto4^(+))limf(x)=underset(hto0)limf(4+h)` `=underset(hto0)lim(|4+h-4|)/(4+h-4)` `=underset(hto0)lim(|h|)/(h)=underset(hto0)limh/h=underset(hto0)lim1` `=1` |
|