1.

If `lim_(xto oo){(x^2+1)/(x+1)-(ax+b)}to oo`, thenA. `a in (1,oo)`B. `a ne 1 , b in R`C. `a in (-oo,1)`D. none of these

Answer» Correct Answer - C
We have,
`lim_(n to oo) {(x^2+1)/(x+1)-ax-b}=oo`
`rArr lim_(x to oo) (x^2(1-a)-x(a+b)+1-b)/(x+1)=oo`
The limit of the given expression will be infinity, if degree of numberator is more than that of denominaotor.
`therefore 1-a gt 0rArr alt 1`.
Hence, `a in (- oo,1)` can assume any real value.


Discussion

No Comment Found