

InterviewSolution
Saved Bookmarks
1. |
Factorise `x^(3)+6x^(2)+11x+6`. |
Answer» Here, constant term=6 Its factors `=+-1,+-2,+-3, +-6` Let `p(x)=x^(3)+6x^(2)+11x+6` Put x=-1 `p(-1)=(-1)^(3)+6(-1)^(2)+11(-1)+6=-1+6-11+6=0` `therefore x+1`, is a factor of p(x). Now, `p(x)=x^(3)+6x^(2)+11x+6` `x^(2)(x+1)+5x^(2)+11x+6` `=x^(2)(x+1)+5x(x+1)+6x+6` `=x^(2)(x+1)+5x(x+1)+6(x+1)` `(x+1)(x^(2)+5x+6)` `=(x+1)[x^(2)+2x+3x+6]` `=(x+1)[x(x+2)+3(x+2)]` =(x+1)(x+2)(x+3) |
|