1.

Figure illustrates the simplest ripple filter. A voltage V=V_(0)(1+ cos omega t) is fed to the left input. Find : (a) the output voltabe V^(')(t), (b)the magnitude of the product is eta =7.0 times less than the direct voltage component, if omega=314 s^(-1).

Answer»

Solution :Here, `V=IR+(int_(0)^(t)Idt)/(C)`
or ` Rdot(I)+(1)/(C)I=dot(V)=- omega V_(0) sin omegat `
Ignoring transients , a solution has the form
`I=I_(0)sin ( omegat- ALPHA)`
` omega RI_(0)COS ( omegat- alpha)+(I_(0))/(C) sin ( omegat- alpha) =- omegaV_(0) sin omegat`
`=-omegaV_(0){sin ( omegat- alpha) cos alpha + cos ( omegat- alpha ) sin alpha}`
s o` RI_(0)=- V_(0) sin alpha`
`(I_(0))/( omegaC)=-V_(0) cos alpha` ` alpha=pi+TAN^(-1) ( omega RC)`
`I_(0)=(V_(0))/( sqrt(R^(2)+((1)/( omegaC))^(2)))`
`I=I_(0) sin ( omegat- tan ^(-1)omegarc- pi)=- I_(0) sin ( omegat - tan^(-1)omegaRC)`
Then`Q=int_(0)^(t) I dt=Q_(0)+(I_(o))/( omega)cos ( omegat- tan ^(-1) omega RC)`
It satisfies `V_(0)(1+cos omegat)=R(dQ)/(dt)+(Q)/(C)`
if `V_(0) (1+ cos omegat)=- RI_(0) sin ( omegat- tan ^(-1) omega RC)`
`+ (Q_(0))/( C)+(I_(0))/( omegaC) cos ( omega t - tan ^(-1)omegaRC)`
and `{:((I_(0))/(omegaC)=V_(0)//sqrt(1+( omegaRC)^(2))),(RI_(0)=(V_(0) omega RC)/(sqrt(1+ omegaRC))):}}checks`
Hence`V^(')=(Q)/(C)=V_(0)+(V_(0))/( sqrt(1+( omegaRC)^(2)))cos ( omegat-alpha)`
`(b)``(V_(0))/( eta)=(V_(0))/( sqrt(1+( omegaRC)^(2)))`
or `eta^(2)-1= omega^(2) ( RC)^(2)`
or `RC=sqrt( eta^(2)-1 )//omega = 22 ms.`


Discussion

No Comment Found

Related InterviewSolutions