

InterviewSolution
Saved Bookmarks
1. |
Figure shows the adiabatic curve for `n` moles of an ideal gas, the bulk modulus for the gas corresponding to the point `P` will be A. `(5 nRT_(0))/(3 V_(0))`B. `nR (2 + (T_(0))/(V_(0)))`C. `nR (1 + (T_(0))/(V_(0)))`D. `(2 nRT_(0))/(V_(0))` |
Answer» Correct Answer - D d. For adiabatic process : Bulk modulus : `B = gamma P` for point `p : P = (nRT)/(V) = (nR 3 T_(0))/(3 V_(0)) = (nRT_(0))/(V_(0))` `implies B = (gamma nRT_(0))/(V_(0))` Now `TV^(gamma - 1) =` constant `implies (gamma - 1) TdV + VdT = 0` `implies (dV)/(dT) = (-V)/((gamma - 1) T)` for point `P rarr` `(-3 V_(0))/(3 T_(0)) = (- (3 V_(0)))/((gamma -1) (e T_(0))0` `implies gamma = 2` so from Eq. (i) `B = (2 nRT_(0))/(V_(0))` |
|