1.

Fill in the blanks in the following table:P(A)P(B)P(A∩B)P(A∪B)(i)\(\frac{1}{3}\)\(\frac{1}{5}\)\(\frac{1}{15}\) .........(ii)0.35..... 0.250.6(iii)0.50.35.......0.7

Answer»

We need to fill the table:

P(A)P(B)P(A∩
B)
P(A∪
B)
(i)\(\frac{1}{3}\)\(\frac{1}{5}\)\(\frac{1}{15}\) .........
(ii)0.35..... 0.250.6
(iii)0.50.35.......0.7

(i) By definition of P(A or B) under axiomatic approach we know that:

P(A ∪ B) = P(A) + P(B) – P(A ∩ B) 

Using data from table, we get: 

∴ P(A ∪ B) = \(\frac{1}{3}+\frac{1}{5}-\frac{1}{15} = \frac{8}{15}-\frac{1}{15}=\frac{7}{15}\) 

(ii) By definition of P(A or B) under axiomatic approach we know that: 

P(A ∪ B) = P(A) + P(B) – P(A ∩ B) 

⇒ P(B) = P(A ∪ B) + P(A ∩ B) – P(A) 

Using data from table, we get: 

∴ P(B) = 0.6 + 0.25 – 0.35 = 0.5 

(iii) By definition of P(A or B) under axiomatic approach we know that:

P(A ∪ B) = P(A) + P(B) – P(A ∩ B) 

⇒ P(A ∩ B) = P(B) + P(A) - P(A ∪ B) 

Using data from table, we get: 

∴ P(A ∩ B) = 0.5 + 0.35 – 0.7 = 0.15 

Filled table is:

P(A)P(B)P(A∩
B)
P(A∪
B)
(i)\(\frac{1}{3}\)\(\frac{1}{5}\)\(\frac{1}{15}\) \(\frac{7}{15}\)
(ii)0.350.50.250.6
(iii)0.50.350.150.7


Discussion

No Comment Found

Related InterviewSolutions