InterviewSolution
Saved Bookmarks
| 1. |
Find ∫ 10 logx.x^2 dx(a) \(\frac{10x^3}{3} \left(x^3 logx-\frac{x^3}{3}\right)+C\)(b) \(\frac{10x^3}{3} \left(logx-\frac{x^3}{3}\right)+C\)(c) \(-\frac{10x^3}{3} \left(x^3 logx-\frac{x^3}{3}\right)+C\)(d) \(\left(x^3 logx-\frac{x^3}{3}\right)+C\)The question was asked in an interview for job.This interesting question is from Integration by Parts topic in section Integrals of Mathematics – Class 12 |
|
Answer» Right answer is (a) \(\FRAC{10x^3}{3} \left(x^3 logx-\frac{x^3}{3}\right)+C\) |
|