

InterviewSolution
Saved Bookmarks
1. |
Find all possible values of the following expressions : `(i) sqrt(x^(2)-4) (ii) sqrt(9-x^(2)) (iii) sqrt(x^(2)-2x+10)` |
Answer» (i) `sqrt(x^(2)-4)` Least value of square root is 0 when `x^(2)=4 " or " x= +-2.` Also `x^(2)-4 ge 0` Hence, `sqrt(x^(2)-4) in [0, oo).` (ii) `sqrt(9-x^(2))` Least value of square root is 0, when `9-x^(2)=0` or `x= +-3.` Also, the greatest value of `9-x^(2)` is 9, when `x = 0`. Hence, we have `0 le 9 - x^(2) le 9 impliessqrt(9-x^(2)) in [0,3].` (iii)`sqrt(x^(2)-2x+10)=sqrt((x-1)^(2)+9)` Here, the least value of `sqrt((x-1)^(2)+9)` is 3 , when `x-1=0`. Also `(x-1)^(2)+9 ge 9impliessqrt((x-1)^(2)+9) ge 3` Hence, `sqrt(x^(2)-2x+10) in [3, oo).` |
|