1.

If `f(x)=(4x+3)/(6x-4), x !=2/3,`show that `fof(x)=x`for all `x!=2/3dot`What is the inverse of `f?`

Answer» `f(x) = ( 4x + 3)/( 6x - 4), x ne (2)/(3)`
`therefore (fof)(x) = f{f(x)} = f((4x = 3)/(6x -4))`
`" " = (4(( 4x = 3)/(6x - 4))+ 3)/(6((4x + 3)/(6x - 4))- 4)`
`" " = ( 16x + 12 + 18x - 12 ) /( 24x + 18 - 24x +16) = ( 34x )/(34) = x`
`therefore (fof) (x) = x`
`rArr (fof) = 1 `
`rArr f = f^(-1)`
Therefore, inverse of `f` is `f^(-1) = f`


Discussion

No Comment Found