| 1. |
Find:(D2 + 4)y = 4sec2 2x |
|
Answer» Given different equation is (D2 + 4)y = 4 sec2 2x It,s auxiliarly equation is m2 + 4 = 0 = m = \(\pm\) 2i \(\therefore\) C . F = c1 cos 2x + c2 sin 2x Let y1 = cos 2x and y2 = sin 2x R = 4 sec2 2x W(y1,y2) = \(\begin{vmatrix} y_1 & y_2 \\[0.3em] y_1^1 & y_2^1 \\[0.3em] \end{vmatrix}\) = \(\begin{vmatrix} cos2x & sin2x \\[0.3em] -2sin2x & 2cos2x \\[0.3em] \end{vmatrix}\) = 2cos2 2x + 2sin2 2x = 2(sin2 2x + cos2 2x) = 2 \(\therefore\) u1 = \(\int \frac{\begin{vmatrix} 0& sin2x \\[0.3em] 4sec^2 2x & 2cos2x \\[0.3em] \end{vmatrix}}{w(y_1,y_2)}dx\) = \(\int \frac{\begin{vmatrix} -4\frac{sin2x}{cos2x}.sec2x \\[0.3em] \end{vmatrix}}{2}dx\) = -2 \(\int\) sec 2x . tan 2x dx = - 2 \(\cfrac{sec\,2x}2\) = - sec 2x u2 = \(\int \frac{\begin{vmatrix} cos2x&0 \\[0.3em] -2sin2x & 4sec^22x \\[0.3em] \end{vmatrix}}{w(y_1,y_2)}dx\) = \(\int\cfrac{4cos2x.sec^2\,2x}2 dx\) = 2 \(\int\) sec 2x dx = 2 \(\cfrac{log|sec2x+tan2x|}2\) = log |sec 2x x tan 2x | P . I = u1y1 + u2y2 = - sec2x . cos 2x + log |sec 2x + tan 2x| sin 2x = - 1+ log |sec2x + tan 2x| sin2x \(\therefore\) complete solution of given differential equation is y = C . F . + P . I . = c1 cos 2x + c2 sin 2x - 1 + log |sec 2x + tan 2x| sin 2x |
|