1.

Find gof and fog, if `f : R ->R`and `g : R ->R`are given by `f(x) = cos x`and `g(x)=3x^2`. Show that `gof!=fog`.

Answer» Let x be an arbitrary real number . Then
`(g o f) (x) =g {f (x)} =g (cos x) =3 (cos x)^(2) =3 cos ^(2) x.`
`(f o g) (x) =f {g (x)}= f(3x^(2)) `
Taking x=0 , we have
(g o f) (0) `=3 cos^(2) 0 =(3 xx 1) =3`
`(f o g) (0) =cos (3 xx 0) =cos 0=1`
`:. (g o f) (0) ne (f o g) (0)`
Hence g o f` ne ` f og


Discussion

No Comment Found