1.

Find k, if one of the lines given by `6x^(2) + kxy + y^(2) = 0` is `2x + y = 0`.

Answer» Let `m_(1)` be the slope of `2x+y=0`
`m_(1)=-2`
Now, comparing `6x^(2)+kxy+y^(2)=0`
we get,
`a=6h=k/2,b =1`
`thereforem_(1)+m_(2)=(-2h)/(b)=-k`
`therefore -2+m_(2)=-kimpliesm_(2)=2-k`
Now `m_(1)*m_(2)=a/b`
`(-2)(2-k)=6/1`
`-4+2k=6`
`k=5`


Discussion

No Comment Found