InterviewSolution
Saved Bookmarks
| 1. |
Find k, if one of the lines given by `6x^(2) + kxy + y^(2) = 0` is `2x + y = 0`. |
|
Answer» Let `m_(1)` be the slope of `2x+y=0` `m_(1)=-2` Now, comparing `6x^(2)+kxy+y^(2)=0` we get, `a=6h=k/2,b =1` `thereforem_(1)+m_(2)=(-2h)/(b)=-k` `therefore -2+m_(2)=-kimpliesm_(2)=2-k` Now `m_(1)*m_(2)=a/b` `(-2)(2-k)=6/1` `-4+2k=6` `k=5` |
|