1.

Find:\( \tan ^{2}\left(\frac{1}{2} \cos ^{-1} \frac{3}{4}\right) \)

Answer»

Let \(\frac12\)cos-1\(\frac34\) = θ 

⇒ cos 2θ = 3/4

⇒ 2 cos2θ - 1 = 3/4

⇒ 2 cos2θ = 1 + 3/4 = 7/4

⇒ cos2θ = 7/8

⇒ cos θ = \(\frac{\sqrt7}{2\sqrt2}\) 

\(\therefore\) sin θ = \(\frac1{2\sqrt2}\)

\(\therefore\) tan θ = \(\frac{sin\theta}{cos\theta}\) = \(\frac{1/2\sqrt2}{\sqrt 7/2\sqrt2}\)  = \(\frac1{\sqrt7}\) 

\(\therefore\) θ = tan-1\(\frac1{\sqrt7}\)

\(\therefore\) θ = tan-1\(\frac1{\sqrt7}\)

⇒ \(\frac12\) cos-1\(\frac34\) = tan-1\(\frac1{\sqrt7}\) 

\(\therefore\) tan2(\(\frac12\)cos-1\(\frac34\)) = tan2(tan-1\(\frac1{\sqrt7}\)) = [tan(tan-1\(\frac1{\sqrt7}\))]2

 = (\(\frac1{\sqrt7}\))2 = \(\frac17\)



Discussion

No Comment Found

Related InterviewSolutions