Saved Bookmarks
| 1. |
Find:\( \tan ^{2}\left(\frac{1}{2} \cos ^{-1} \frac{3}{4}\right) \) |
|
Answer» Let \(\frac12\)cos-1\(\frac34\) = θ ⇒ cos 2θ = 3/4 ⇒ 2 cos2θ - 1 = 3/4 ⇒ 2 cos2θ = 1 + 3/4 = 7/4 ⇒ cos2θ = 7/8 ⇒ cos θ = \(\frac{\sqrt7}{2\sqrt2}\) \(\therefore\) sin θ = \(\frac1{2\sqrt2}\) \(\therefore\) tan θ = \(\frac{sin\theta}{cos\theta}\) = \(\frac{1/2\sqrt2}{\sqrt 7/2\sqrt2}\) = \(\frac1{\sqrt7}\) \(\therefore\) θ = tan-1\(\frac1{\sqrt7}\) \(\therefore\) θ = tan-1\(\frac1{\sqrt7}\) ⇒ \(\frac12\) cos-1\(\frac34\) = tan-1\(\frac1{\sqrt7}\) \(\therefore\) tan2(\(\frac12\)cos-1\(\frac34\)) = tan2(tan-1\(\frac1{\sqrt7}\)) = [tan(tan-1\(\frac1{\sqrt7}\))]2 = (\(\frac1{\sqrt7}\))2 = \(\frac17\) |
|