1.

Find the acceleration of centre of mass of the blocks of masses m_(1) and m_(2) (m_(1)gtm_(2)) in Atwood's machine :

Answer» <html><body><p></p>Solution :We know from Newton.s laws of <a href="https://interviewquestions.tuteehub.com/tag/motion-1104108" style="font-weight:bold;" target="_blank" title="Click to know more about MOTION">MOTION</a> magnitude of acceleration of each <a href="https://interviewquestions.tuteehub.com/tag/block-18865" style="font-weight:bold;" target="_blank" title="Click to know more about BLOCK">BLOCK</a> is <br/> `a=((m_(1)-m_(2))/(m_(1)+m_(2)))<a href="https://interviewquestions.tuteehub.com/tag/g-1003017" style="font-weight:bold;" target="_blank" title="Click to know more about G">G</a>` <br/> <img src="https://doubtnut-static.s.llnwi.net/static/physics_images/AKS_NEO_CAO_PHY_XI_V01_B_C07_SLV_015_S01.png" width="80%"/> <br/> Now acceleration of their C.M is <br/> `a_(cm)=(m_(1)a+m_(2)(-a))/(m_(1)+m_(2))`, `a_(cm)=((m_(1)-m_(2))//(m_(1)+m_(2)))a` <br/> `a_(cm)=((m_(1)-m_(2))/(m_(1)+m_(2)))((m_(1)-m_(2))/(m_(1)+m_(2)))g` <br/> `:.` <a href="https://interviewquestions.tuteehub.com/tag/accleration-846938" style="font-weight:bold;" target="_blank" title="Click to know more about ACCLERATION">ACCLERATION</a> of <a href="https://interviewquestions.tuteehub.com/tag/centre-912170" style="font-weight:bold;" target="_blank" title="Click to know more about CENTRE">CENTRE</a> of mass `a_(cm)=((m_(1)-m_(2))/(m_(1)+m_(2)))^(2)g`</body></html>


Discussion

No Comment Found